Finden Sie schnell ferrit magnete für Ihr Unternehmen: 21 Ergebnisse

Dauermagnete - Ferrit

Dauermagnete - Ferrit

Hartferrit-Magnete sind die weltweit am häufigsten eingesetzten Werkstoffe. Bariumferrit und Strontiumferrit sind Sinterwerkstoffe der Metalloxyde BaO2 bzw. SrO2 in Verbindung mit Fe2O3. Diese Rohstoffe stehen in großen Mengen zur Verfügung und sind günstig. Die Magnete werden isotrop und anisotrop hergestellt. Isotrope Magnete haben in allen Richtungen etwa gleiche magnetische Werte und können so in allen Achsrichtungen magnetisiert werden. Sie haben eine geringe Energiedichte und sind vergleichsweise billig. Anisotrope Magnete werden in einem Magnetfeld hergestellt und erhalten dadurch eine Vorzugsrichtung der Magnetisierung. Gegenüber isotropen Magneten ist die Energiedichte um ca. 300% höher. Die Koerzitivfeldstärke ist im Verhältnis zur Remanenz hoch. Hartferrite haben einen relativ hohen Temperaturkoeffizient der Remanenz von ca. 0,2% pro °C und können von -40°C bis ca. +200°C eingesetzt werden. Sie sind hart und spröde, aber auch unempfindlicher gegen Oxydation, Witterungseinflüsse und viele Chemikalien. Eine Bearbeitung ist nur mit Diamantwerkzeugen möglich.
Dauermagnete - Kunststoffgebundene Magnete

Dauermagnete - Kunststoffgebundene Magnete

Kunststoffgebundene Magnete sind heute weit verbreitet und werden in ihrer Bedeutung voraussichtlich weiter zunehmen. Zu ihrer Herstellung werden Magnetwerkstoffe pulverisiert, anschließend mit geeigneten Kunststoffen vermischt und durch Kalendrieren, Extrudieren, Pressen oder Spritzgießen zu fertigen Magneten verarbeitet. Aus flexiblem Kunststoff und Hartferrit-Pulver werden z.B. Magnetplatten- und bänder mit PVC-Kaschierung als Beschriftungsschilder hergestellt. Von höherer magnetischer Qualität sind Magnetplatten- und bänder, die bei der Fertigung ein homogenes Magnetfeld durchlaufen haben. Dadurch werden die im Kunststoff enthaltenen Magnetpartikel ausgerichtet und es entsteht eine Vorzugsrichtung (Anisotropie).
Kunststoffgebundene Magnete

Kunststoffgebundene Magnete

Kunststoffgebundene Magnete sind Teilchenverbundwerkstoffe, bei denen Dauermagnetpulver in Kunststoffbinder eingebettet werden. Als Magnetpulver kommen Hartferrit (HF), verschiedene SmCo- und NdFeB-Pulver und in sehr geringem Ausmaß auch AlNiCo-Legierungen zum Einsatz. Zum Einbinden der Magentpartikel werden thermoplastische Binder, z.B. Polyamid (PA) oder Polyphenylsulfid (PPS), sowie Duroplaste, z.B. Epoxyharze, verwendet. Je nach Materialzusammensetzung und Fertigungsverfahren können isotrope und anisotrope Magnete mit unterschiedlichen magnetischen und mechanischen Werten hergestellt werden. Da nicht nur die Art des Magnet- und Kunststoffmaterials, sondern auch Füll- und Ausrichtungsgrad die Eigenschaften des Verbundwerkstoffes bestimmen, ergibt sich eine große Breite an magnetischen Kennwerten und eine beachtliche Sorten- und Formenvielfalt. Herstellungsprozess der formstabilen kunststoffgebundenen Magnete unterscheidet zwei Verfahren. Das am häufigsten verwendete Herstellungsverfahren ist das Spritzgussverfahren. Im Formpressverfahren werden vor allem kunststoffgebundene Seltenerdmagnete gefertigt. Aus den Magnetpulvern und den Kunststoffen wird in Mischanlagen zunächst ein Compound hergestellt. Beim Spritzgussverfahren werden Hartferrit- oder Seltenerdpulver in thermoplastische Kunststoffe eingebettet und granuliert. Das Granulat wird auf Spritzgussmaschinen zu Magnetformteilen verarbeitet. Bei der Formpresstechnik, die nur für die Herstellung der kunststoffgebundenen Seltenerdmagnete wirtschaftlich relevant ist, werden geeignete Pulvermischungen in Werkzeugen und Pressen verarbeitet. NdFeB-Pulver wird mit duroplastischen Harzen verbunden. In den Presswerkzeugen werden die Compoundmischungen dann zu den gebräuchlichen Formen wie Blöcken, Scheiben, Ringen, Flachprofilen und Segmenten verpresst. Nach der Formgebung folgt eine thermische Aushärtungsphase, die die Presslinge mechanisch stabil macht. Im Anschluss an die Fertigungsprozesse erfolgen die Endbearbeitung und Oberflächenreinigung. Je nach Kundenwunsch wird magnetisiert, die Oberfläche markiert oder beschichtet. Kunststoffgebundene Hartferritmagnete Im Herstellungsprozess der formstabilen kunststoffgebundenen Hartferritmagnete werden Teilchen mit dauermagnetischen Eigenschaften aus Barium- oder Strontiumferrit in eine thermoplastischen Kunststoff eingebettet. Der Volumenanteil des Hartferrit-Pulvers bestimmt entscheidend das erreichbare magnetische Niveau. Schon infolge dieses "Verdünnungseffektes" können kunststoffgebundene Hartferrit-Magnete nicht die magnetischen Werte des Ausgangsmaterials (Vollmaterials) erreichen. Kunststoffgebundene Magnete werden bei gleichem Volumen stets schwächere magnetische Eigenschaften aufweisen als gesinterte isotrope Magnete. Höhere magnetische Werte lassen sich mit anisotropen kunststoffgebundenen Hartferrit-Magneten erreichen, die jedoch nicht das Niveau gesinterter anisotroper Hartferrit-Magnete erzielen. Durch die Mischverhältnisse von Ferritanteil und Kunststoffanteil können ferner Elastizität und Festigkeit des Magneten beeinflusst werden. Kunststoffgebundene NdFeB-Magnete Magnete auf der Basis von Neodym-Eisen-Bor gehören zur jüngsten Generation der Dauermagnetwerkstoffe. Kunststoffgebundene NdFeB-Magnete kommen insbesondere dann zur Anwendung, wenn z.B. mit Hartferriten magnetische Anforderungen nicht zu erfüllen sind oder gesinterte Seltenerdmetall-Magnete aus wirtschaftlichen oder fertigungstechnischen Gründen nicht in Frage kommen. Weitere Vorteile liegen darin, das kunststoffgepritzte Magnete auf NdFeB-Basis im allgemeinen magnetisch isotrop sind und somit in beliebiger Richtung oder mit beliebiger Polzahl magnetisiert werden können. Die formgepressten Sorten zeigen, auf Grund des bei dieser Technik erzielbaren höheren Füllgrades und der somit höheren Dichte, im Vergleich zu den spritzgegossenen Sorten jeweils das höhere magnetische Niveau. Das höhere Energieprodukt erlaubt somit kleinere Bauformen im Verhältnis zu Hartferriten, wobei in aller Regel bei diesem Herstellungsprozess anisotrope Magnete realisiert werden, die Remanenzen bis 0,8T ermöglichen.
Dauermagnete - NdFeB Rostfrei

Dauermagnete - NdFeB Rostfrei

"Rostfreie" NdFeB-Magnete sind eine der jüngsten Neuentwicklungen. Jedoch ist "rostfrei" hierbei nicht wörtlich zu verstehen. Die Legierung wurde optimiert, damit das Magnetmaterial korrosionsbeständiger ist. Trotz allem benötigen sie eine spezielle Handhabung und je nach Einsatzgebiet, eine entsprechende Beschichtung. Unter normalen Umgebungsbedingungen (z. B. Raumtemperatur, rel. Luftfeuchtigkeit bis 50%, ohne Betauung) können alle NdFeB-Magnete ohne besonderen Oberflächenschutz eingesetzt werden. Bei korrosiven Einsatzbedingungen empfehlen wir einen Oberflächenschutz durch Kunststoffbeschichtung.
Neodym-Eisen-Bor-Magnete

Neodym-Eisen-Bor-Magnete

Bei REFeB bzw. NdFeB handelt es sich um einen Werkstoff, der aus dem Seltenerdmetall Neodym (Nd), Eisen (Fe) und Bor (B) besteht und erst in jüngster Zeit entwickelt worden ist. Mit Permanentmagneten aus Neodym-Eisen-Bor können Energieprodukte erreicht werden, die bis zu 40 % über den höchsten bisher bekannten und verwendeten metallischen Magneten liegen. Sowohl neue technische Lösungen werden dadurch ermöglicht als auch eine Reduzierung des Magnetmaterialeinsatzes bei gleicher Leistung des Systems und nicht zuletzt die Möglichkeit der Miniaturisierung des gesamten Systems. Im Gegensatz zu Magneten aus SmCo sind die Rohstoffe für NdFeB-Magnete auf Grund größerer Verfügbarkeit bedeutend günstiger, da der Anteil von Neodym in Seltenerdmetallerzen um ein Vielfaches höher ist als der von Samarium. Ebenso wie Magnete aus Samarium-Cobalt werden auch NdFeB-Magnete pulvermetallurgisch durch Sintern hergestellt. Die Legierungen können mittels verschiedener Verfahren hergestellt werden: Einerseits schmelzmetallurgisch, wobei bestimmte Vormaterialien verschmolzen und anschließend gemahlen werden. Andererseits können durch einen Reduktions- und Diffusionsprozeß aus SE-Oxiden und Metallen Legierungspulver hergestellt werden, die anschließend nochmals feingemahlen werden. Das einkristalline Pulver mit Korngrößen um 5 µm wird in das Matrizenhohl eines Preßwerkzeuges gefüllt. Beim Pressen unter Magnetfeldeinwirkung entsteht ein anisotroper Magnet. Alternativ zum Formpressen ist auch ein isostatisches Pressen unter Feldeinwirkung möglich. Hierbei werden die anisotropen Pulverpartikel parallel zur Richtung des Magnetfeldes ausgerichtet. Beim Pressen wird das Material verdichtet und die Ausrichtung fixiert. Anschließend werden die Magnete unter Schutzgas oder Vakuum bei Temperaturen zwischen 1030° und 1100 C° gesintert. Durch den Sinterprozeß muß mit einer Schrumpfung von ca. 15-20% gerechnet werden. Es werden Dichten von 7,4 - 7,6 g/cm3 erreicht. Im Anschluß daran werden die Teile einer Wärmebehandlung bei Temperaturen zwischen 600° und 900 C° unterzogen. Ist die Einhaltung kundenspezifischer Toleranzen erforderlich können nach der Wärmebehandlung die Teile bearbeitet, d.h. geschliffen werden.
Hartferritmagnete

Hartferritmagnete

Magnete aus Hartferrit sind die kostengünstigsten und weltweit verbreitetsten aller Dauermagnete. Hartferrite sind die kostengünstigsten und weltweit verbreitetsten aller Magnetwerkstoffe. Es handelt sich um keramische Werkstoffe, die entsprechend sehr hart und spröde sind. Im Vergleich mit anderen metallischen Magnetwerkstoffen sind die magnetischen Eigenschaften von Hartferritmagneten relativ niedrig. Neben den geringen Kosten liegen die Vorteile dafür in einer hohen Korrosions- und chemischen Beständigkeit. Zudem sind sie leicht magnetisierbar und bieten viele Anwendungsmöglichkeiten.
Dauermagnete - NdFeB

Dauermagnete - NdFeB

Als Hochenergie-Magnete werden Dauermagnete aus den "seltenen" Erden bezeichnet. Diese Materialien zeichen sich durch ihr hohes Energieprodukt von über 300 kJ pro Kubikmeter aus. Von praktischer Bedeutung sind dabei folgende Materialien: Samarium-Cobalt (SmCo) Neodymium-Eisen-Bor (NdFeB) Die Herstellung von Sm-Co- und NdFeB-Magneten erfolgt durch Einschmelzen der Legierung. Danach werden die Materialblöcke zerbrochen und zu einem feinen Pulver gemahlen, im Magnetfeld gepreßt und anschließend gesintert. Aus den Rohblöcken werden mit der Diamantsäge unter Wasser die Formmagnete zugeschnitten. Für große Stückzahlen wird das Pulver in Formen gepreßt und anschließend gesintert. Vergleich: Ein Bariumferritmagnet muß bei gleicher Wirkung (z.B. 100mT Induktion in 1 mm Entfernung von der Polfläche) 25x größer sein, als ein Samarium-Cobalt- Magnet. Das Energieprodukt von NdFeB ist sogar noch einmal ca. 50% höher!
NdFeB-Magnete

NdFeB-Magnete

Wir bieten dann die kompletten Dienstleistungen von der Entwicklung hin zur Musterfertigung, die Probeabnahme, Vorserie bis hin zur Serienlieferung sowie After-Sales-Service. Hauptproduktkategorien: Neue Energie-Automagnete Traktormagnete Servomotormagnete Schrittmotormagnete Gleichstrommotormagnete Aufzugsmagnete
Samarium-Cobalt-Magnete

Samarium-Cobalt-Magnete

Die Dauermagnete auf Basis intermetallisch ferromagnetischer Verbindungen von Seltenen Erden sind anisotrop und werden pulvermetallurgisch durch Sintern hergestellt. Die Dauermagnete auf Basis intermetallisch ferromagnetischer Verbindungen von Seltenen Erden, insbesondere Samarium (Sm) und Cobalt (Co) (weitere Elemente sind Eisen (Fe), Kupfer (Cu) und Zirkon (Zr) sind anisotrop und werden pulvermetallurgisch durch Sintern hergestellt. Kennzeichnend für die RECo-Magnete ist ihre hohe Energiedichte, wodurch - z.B. im Vergleich zum Einsatz von Ferritmagneten - die häufig angestrebte Miniaturisierung in der Bauform ermöglicht wird bzw. je nach Auslegung des gesamten Systems bei gleicher Bauform eine höhere Leistung erreicht werden kann. Auf Grund der sehr hohen Koerzitivfeldstärke sind Magnete aus SmCo außerordentlich widerstandsfähig gegen Entmagnetisierung und halten auch extremen elektromagnetischen Gegenfeldern stand. Samarium-Cobalt-Magnete sind sehr hart und weisen eine hohe Materialsprödigkeit auf. Eine vorsichtige Bearbeitung und Handhabung ist zu empfehlen, um Ausbrüche und Risse zu vermeiden. Die Legierungsaufbereitung erfolgt durch Einschmelzen der Legierung und Mahlen der Vormaterialien zu einkristallinem Pulver mit Korngrößen unter 5µm. Durch das anschließende Pressen unter Magnetfeldeinwirkung erfolgt die magnetische Ausrichtung. Je nach Orientierung der Preßrichtung zum Magnetfeld sind die Ausrichtung und somit auch die magnetischen Werte verschieden stark. Beim sogenannten Querfeldpressen liegen Magnetfeld und Preßrichtung senkrecht zueinander. Hierbei werden die höchste Energiedichte und beste Remanenz erreicht. Beim Axialfeldpressen (Preßrichtung und Magnetfeld verlaufen parallel) erreicht man niedrigere Werte (etwa 10% weniger beim Br und 20 % weniger beim (B.H)max-Wert), die im allgemeinen jedoch die Kundenanforderungen noch erfüllen und zudem in größeren Stückzahlen kostengünstiger herzustellen sind. Das Sintern der Magnete erfolgt unter Vakuum oder Schutzgas bei Temperaturen zwischen 1100° - 1200 °C. Die Sinterdichten liegen bei 8,2-8,5 g/cm3. Anschließend werden die Magnete einer Wärmebehandlung zwischen 500° - 900 C° unterzogen. Als weitere Fertigungsschritte schließen sich dann die Bearbeitung, Schleifen, Einbau ins System etc. an.
Magnetfilter

Magnetfilter

Magnetfilter machen es möglich, eisenhaltige Bestandteile aus Schüttgütern mit maximaler Sicherheit herauszufiltern. Zum Einsatz kommen sie zum Beispiel in der Lebensmittelverarbeitung, bei der Herstellung von Viehfutter oder in Recyclinganlagen.
AlNiCo-Magnete

AlNiCo-Magnete

Hierbei handelt es sich um metallische Dauermagnete auf Basis von AlNiCo-Legierungen. Je nach Materialzusammensetzung (neben Aluminium (Al), Nickel (Ni) und Cobalt (Co) auch Eisen (Fe), Kupfer (Cu) sowie Titan (Ti)) und Fertigungsverfahren können isotrope und anisotrope Magnete mit unterschiedlichen magnetischen Werten hergestellt werden. Dauermagnete aus AlNiCo weisen eine große magnetische Stabilität gegenüber Temperatureinflüssen auf (Einsatztemperaturen von bis zu 500 °C sind möglich) und verfügen über eine hohe Remanenz. AlNiCo-Magnete können mittels unterschiedlicher Verfahren hergestellt werden: Im Rahmen des Gußverfahrens werden die Vormaterialien geschmolzen und anschließend in Sand- oder Feingußformen gegossen. Beim Sinterverfahren werden die Pulver der Vormaterialien zunächst gemischt, in das Matrizenhohl eines Preßwerkzeuges gefüllt und danach zu Formkörpern verpreßt. Anschließend werden die Teile unter Schutzgas oder im Vakuum bei Temperaturen von etwa 1300 °C gesintert. Durch diesen Prozeß entsteht die gewünschte Legierung und die Verdichtung des Formkörpers. Je nach Preßdichte und Sintertemperatur ist mit einer Sinterschrumpfung von ca. 10 % zu rechnen. Im Anschluß daran werden die Magnete verschiedenen Wärmbehandlungen unterzogen, um die elementare Struktur weiter auszurichten und zu festigen. Anschließend können die Magnete bearbeitet werden.
Kühlschrank, Büromagnete, Dispo-Haftmagnete aus Hartferrit oder NdFeB mit Kunststoffgehäuse

Kühlschrank, Büromagnete, Dispo-Haftmagnete aus Hartferrit oder NdFeB mit Kunststoffgehäuse

Dispo-Haftmagnete werden für die Zettelbefestigung und als Signale auf Plantafeln, in Büros, dem Lager, im Auto oder im Haushalt verwendet. Dispo-Haftmagnete aus Hartferrit oder NdFeB mit Kunststoffgehäuse Lieferbar in den Farben weiß, blau, grün, gelb, rot, orange, schwarz. Folgende Farben sind auf Anfrage lieferbar: braun, grau, hellblau, pink, türkis, violett. Bei Abschluss von Rahmenaufträgen in entsprechender Höhe können auch Gehäuse in Sonderfarben gefertigt werden.
Nickel

Nickel

Nickel ist ein vielseitiges Metall, das in vielen Industrien aufgrund seiner Korrosionsbeständigkeit und Legierungsfähigkeit geschätzt wird. Es wird häufig in der Edelstahlproduktion verwendet, wo es zur Herstellung von rostfreiem Stahl beiträgt. Nickel ist auch ein wichtiger Bestandteil in der Elektronikindustrie, wo es für die Herstellung von Batterien und anderen elektronischen Komponenten verwendet wird. Neben seinen technischen Anwendungen spielt Nickel auch eine bedeutende Rolle in der chemischen Industrie. Es wird als Katalysator in verschiedenen chemischen Prozessen verwendet, einschließlich der Erdölverarbeitung. Nickel ist zudem ein essenzielles Spurenelement für den menschlichen Körper und spielt eine wichtige Rolle im Stoffwechsel und bei enzymatischen Prozessen. Seine Vielseitigkeit und hervorragenden Eigenschaften machen Nickel zu einem unverzichtbaren Material in vielen Bereichen.
Magnetleiste, Betonfertigteilindustrie, MLU-0300 bis MLU-0550

Magnetleiste, Betonfertigteilindustrie, MLU-0300 bis MLU-0550

Standard-Magnetleiste mit weichplastischem Werkstoff Haftkraft 300 bis 550 kp Haftkraft 300 bis 550 kp - Standard-Magnetleiste mit weichplastischem Werkstoff - Offene Bauform - Temperaturbelastung bis 60° C Lieferbar: - in Breite 50 und 54 mm / Bestell-Bsp. MLU-0300 bzw. MLU-0300B54 - ohne oberen Kantenbruch / Bestell-Bsp.: MLU-0300 - mit oberem Kantenbruch / Bestell-Bsp.: MLU-0300K - mit Alu-Stirn-Platte, 5 mm dick / Bestell-Bsp: MLU-0300-ALU
Spreizmagnete

Spreizmagnete

Spreizmagnete werden verwendet, um gestapelte Blech- oder Stahlplatten voneinander zu trennen. Dabei werden an beiden Seiten des Stapels Magnete angebracht, die Plattend voneinander trennen. Die Wirkungsweise der Blechspreiz-Magnete beruht auf dem Prinzip, dass gleichnahmige Magnetpole sich abstoßen. Seitlich an den Blechstapel angesetzt erzeugen Blechspreiz-Magnete eine gleiche magnetische Induktion in den übereinander liegenden Blechen, so dass diese auffächern und vereinzelt werden. Blechspreiz-Magnete sind geschlossene Systeme, in denen hochwertige Ferrit-Magnete oder Neodyme eingesetzt sind. Diese Werkstoffe garantieren ein konstantes Magnetfeld über viele Jahre
Indium Draht 99,99+% Durchmesser 0,5 - 3,0 mm

Indium Draht 99,99+% Durchmesser 0,5 - 3,0 mm

Haines & Maassen hält ständig Indium Draht in besonders für Indium Dichtungen in der Vakuum- bzw Cryotechnologie beliebten 5- und 10m Rollen im Lager Bonn vorrätig. Indium Draht zeichnet sich durch hohe Duktilität aus, es passt sich unter leichtem Druck selbst kleinsten Unebenheiten des Untergrundes an. Dies und seine geringe Neigung zur Versprödung (auch unter extrem niedrigen Temperaturen) macht Indium Draht zu einem bevorzugten Dichtungsmaterial für Cryotechnologie (Indiumdichtung) und Vakuumtechnik. Sich unterschiedlich ausdehnende oder zusammenziehende Materialien (z.B. Kupfer und Glas) lassen sich dank seiner Duktilität mit Indium Draht verbinden. Dies ermöglicht diese häufig anzutreffenden besonderen Anforderungen im Bereich der Vakkumtechnik und der Cryotechnologie besser zu erfüllen als viele andere Dichtungsmaterialien. Der niedrige Schmelzpunkt von Indiumdraht erlaubt auch den Einsatz z.B. im Lötbereich temperaturempfindlicher Anwendungen. Durchmesser: 1,0 mm Verpackung: auf Rolle sicher verpackt
Indium (In) Draht 99,99+% Durchmesser 0,5 - 3,0 mm

Indium (In) Draht 99,99+% Durchmesser 0,5 - 3,0 mm

Wir haben ständig Indium Draht in 0,5 - 3,0mm in besonders für Indium Dichtungen in der Vakuum- bzw Cryotechnologie beliebten 5- und 10m Rollen im Lager Bonn vorrätig. Indium Draht zeichnet sich durch hohe Duktilität aus, es passt sich unter leichtem Druck selbst kleinsten Unebenheiten des Untergrundes an. Dies und seine geringe Neigung zur Versprödung (auch unter extrem niedrigen Temperaturen) macht Indium Draht zu einem bevorzugten Dichtungsmaterial für Cryotechnologie (Indiumdichtung) und Vakuumtechnik. Sich unterschiedlich ausdehnende oder zusammenziehende Materialien (z.B. Kupfer und Glas) lassen sich dank seiner Duktilität mit Indium Draht verbinden. Dies ermöglicht diese häufig anzutreffenden besonderen Anforderungen im Bereich der Vakkumtechnik und der Cryotechnologie besser zu erfüllen als viele andere Dichtungsmaterialien. Der niedrige Schmelzpunkt von Indiumdraht erlaubt auch den Einsatz z.B. im Lötbereich temperaturempfindlicher Anwendungen. Durchmesser: 0,5 mm - 3mm Verpackung: auf Rolle sicher verpackt
Rhenium (Re) 99,9% Pellets

Rhenium (Re) 99,9% Pellets

Rhenium 99,9% Pellets in gepresster Form. Versenden wir schnell und sicher in PE-Flaschen an Sie.
PE UHMW

PE UHMW

Wir beraten Sie gerne kostenlos, welcher Werkstoff für Sie am Besten geeignet ist ! Polyethylen Ultra-High-Molecular-Weight (Kurzform: PE UHMW, RCH 1000 oder PE 1000) ist ein sehr gut zu bearbeitender technischer Kunststoff (Thermoplastischer Kunststoff), hat wie alle PE Typen mit ca. 0,95 g/cm³ das zweit-geringste Gewicht von allen technischen Kunststoffen und bietet allein damit eine sehr interessante Preisbasis. Die Feuchtigkeitsaufnahme von PE 1000 liegt bei 0,0%, der E-Modul bei geringen 800 N/mm², jedoch ist das Material durch seine hohe laugen- und säurebeständigkeit, Selbstschmierungseffekt und einfache Kunststoffverarbeitung (Zuschneiden, Fräsen, Drehen, Wasserstrahlschneiden, Schweißen) ein sehr beliebter Werkstoff bei auf Verschleiß- und Abrieb beanspruchte technische Kunststoffteile im Maschinenbau (PE UHMW), als Auskleidungen bei Schüttgutbehältern aber auch gerade als Schneidbrett in der Lebensmittelindustrie oder in Privathaushalten. Wir bieten Pressplatten aus Polyethylen 1000 mit Stärken bis zu 280 mm lunkerfrei und spannungsarm, begründet durch das Produktionsverfahren, als auch Zuschnitte und Formteile / technische Kunststoffteile (Frästeile, Drehteile) aus Polyethylenplatten oder -rundstäben. Pressplatten sind im Gegensatz zu Extrusionsplatten spannungsärmer und für das Zerspanen besser geeignet, haben jedoch gegenüber den Extrusionsplatten aufgrund des aufwendigeren Herstellungsprozesses einen preislichen Nachteil. Standardfarben PE UHMW Halbzeuge sind natur, grün & schwarz, jedoch sind Sonderfarben ab entsprechenden Mindestmengen von 1.000 – 2.000 kg möglich. PE UHMW Kunststoffplatten zeichnen sich durch eine hohe Variationsmöglichkeiten wie Polyethylene UHMW elektrisch leitfähig (PE UHMW el), Polyethylen UHMW strahlenabsorbierend, Polyethylen UHMW antistatisch (PE UHMW ast), PE UHMW mit flüssigen oder festen Schmierstoffen oder als UV beständige Version als PE UHMW UV aus. Fragen Sie uns, wir werden auch für Sie nach einer Lösung suchen ! Liefermengen dieser Polyethylenhalbzeuge sind als Pressplatten auch Einzelstücke, abhängig ob nun Standard PE UHMW oder aber Sonder PE UHMW mit Additiven. Für Angebote über Polyethylenplatten, Rundstäbe, Zuschnitte oder Formteilen fragen Sie uns einfach an, wir stellen Ihnen gerne ein Angebot.
Metallgehäuse

Metallgehäuse

Wir realisieren Gehäuse, Druckgussteile, Stanzteile, Tiefziehteile, Drehteile, Frästeile und Kontaktfedern aus Metall. Dabei fertigen wir sowohl Kleinstpräzisionsteile als auch Großteile. Auch die partielle bzw. komplette Kunststoff- und Gummiumspritzung von Metallteile gehört zu unserem Portfolio. Die angefertigten Metallteile können durch Dichtungselemente, Gewindeeinsätze und Lagerbüchsen komplettiert werden. Dabei bieten wir auch Verfahren zum Kalteinpressen an, sowie kostengünstige Oberflächenveredelungen. Wir begleiten unsere Kunden während des ganzen Projektablaufs und organisieren die Werkzeug- und Musterherstellung sowie die Fertigung (inkl. Oberflächenveredelung) und optional auch die Assemblierung der Serienteile.
Scheibenfedern

Scheibenfedern

gefertigt nach DIN 6888 bzw. SAE, lagermäßig lieferbar, Ausführung in allen Werkstoffen, mit/ohne Wärmebehandlung Sonderabmessungen möglich. Höhe nach DIN 6888: 1,40 - 16,00 mm Länge nach DIN 6888: 3,82 - 43,08 mm Breite nach DIN 6888: 1,00 - 10,00 mm Höhe nach SAE: 0,203 - 0,641 inch Länge nach SAE: 0,500 - 1,500 inch Breite nach SAE: 0,625 - 0,375 inch